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The young forest serves as a biomass reserve for bioenergy in Finland. Continuous 
monitoring is essential for its sustainable growth. Detecting tree species at the individual 
tree level is critical for assessing carbon sequestration in young trees. Therefore, the 
objective of this research is to detect Scots pine, Norway spruce, and deciduous tree species 
using UAV imagery and the yolov12 neural network model. The specific objective is to 
compare the yolov12 tree species detection accuracy between imageries from consumer 
grade RGB camera and advance MicaSense camera design for specific UAV ortho image 
analysis.   

The study area (27.87°E 61.73˚N) is located in Juva, Finland. UAV drone scanning was 
carried out during the fall of 2024 over approximately 30 hectares of forest. The multispectral 
(RGB+NIR+red edge) imagery was captured using MicaSense and processed in Pix4D 
Mapper. Moreover, high resolution RGB image were also taken using consumer grade sony 
camera. 1.5-hectare Pine, spruce, and silver birch dominated young forest was chosen for 
this work. Training samples for the yolo model were created manually using ArcGIS Pro 3.5. 
In total, 537 polygons (Pine: 250, Spruce: 107 and 
Deciduous:180) were created for crown delineation and 
training sample preparations (figure, right). Although we 
had access to additional red-edge and near-infrared 
(NIR) bands, we used only the RGB channels from the 
MicaSense sensor to ensure a balanced comparison. 
The table below shows the comparison between 
consumer grade and MicaSense camera used in this 
study. The biggest tradeoff between the sensors is the 
output image resolution (12cm and 1.4 cm). 

Hence, it is mainly a study of the 
comparison of species detection between 
high resolution (1.4 cm) consumer grade 
product RGB and low resolution (12 cm) 
advance MicaSense product RGB imagery 
utilizing yolov12 neural network model. The 
yolov12 is the latest version of the yolo 
series. The model was trained in python 

using Google Colab. The model was trained with a batch size of 10, image size of 640 and 
with 100 epochs. We used Ultralytics 8.3.182 Python-3.12.11 torch-2.8.0+cu126 CUDA:0 
(Tesla T4, 15095MiB) and model: yolo12s.pt.  

The performance of our object detection model was highly dependent on spatial resolution 
(Table below). The model trained on 12 cm MicaSense imagery demonstrated excellent 
proficiency, with an overall mAP50 of 0.94 and a strict mAP50-95 of 0.76, indicating robust 
detection and precise localization for all species. In contrast, the model trained at 1.4 cm 
Sony imagery performed significantly worse (mAP50: 0.76, mAP50-95: 0.56). Notable drop 

Characteristics MicaSense Sony 

Model Altum DSC-RX1RM2 

F-stop f/1.8 f/4 

Exposure (sec) 1/830  1/1600  

Focal length (mm) 8 35 

Bit depth 16 24 

Spatial resolution of 
the image (cm) 

12 1.4 

 



 

 

in mAP50-95 reveals a key weakness: while the high-resolution model can find objects, it 
fails to localize them with high accuracy. 

 

Camera Class Precision Recall mAP50 mAP50-90 

Sony (1.4 cm) All 0.88 0.67 0.76 0.56 

 Pine 0.84 0.65 0.74 0.56 

 Spruce 0.93 0.68 0.76 0.56 

 Deciduous 0.87 0.69 0.79 0.58 

MicaSense (12 cm) All 0.94 0.91 0.94 0.76 

 Pine 0.89 0.90 0.95 0.75 

 Spruce 0.96 0.89 0.89 0.74 

 Deciduous 0.96 0.94 0.99 0.77 

 

The confusion matrices 
(figure, right) for the 1.4 
cm resolution model 
reveals significant 
misclassification, with 
substantial off-diagonal 
values indicating frequent 
confusion between all 
species, whereas the 
matrix for the 12 cm 
model demonstrates 
near-perfect classification, evidenced by the intense concentration of predictions along its 

main diagonal. This implies that for 
tree detection tasks, there is a point 
beyond which increased resolution 
introduces detrimental fine-grained 
variance, and a coarser resolution can 
yield more generalizable and effective 
features for accurate object detection. 
However, when applied to the entire 
study area, the model trained on 
higher-resolution imagery (1.4 
cm/pixel) detected a greater quantity 
of instances than the model trained on 
lower-resolution imagery (12 
cm/pixel), despite the latter's superior 

overall accuracy (see figure above). 

In conclusion, while the model trained on 12 cm imagery demonstrated superior 
classification accuracy and precision in bounding box placement on the validation dataset, 
the model trained on 1.4 cm imagery exhibited a higher sensitivity for tree detection, 
resulting in a greater total count of identified trees across the extensive study area. This 
paradox highlights a critical trade-off between localization precision and detection sensitivity 
inherent in object detection models. Therefore, further research is recommended to 
investigate the optimal balance between spatial resolution and sensor specifications for 
UAV-based tree detection utilizing yolo neural network models, particularly for large-area. 



Closed and Open Operational Models in EASA Certified UAV 
Operations: Competency and Organisational Implications 
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Abstract 

From 1 May 2025, the European Union Aviation Safety Agency (EASA) 

certified category for unmanned aircraft systems (UAS) enters into force, 

harmonising requirements for airworthiness, operational authorisations, and 

organisational approvals. The framework builds on Regulations (EU) 

2019/945 (products) and 2019/947 (operations), consolidated in EASA’s Easy 

Access Rules (EAR), and is extended by the 2024 certified-UAS package 

(2024/1108, 2024/1107, 2024/1109, 2024/1110). Information security 

obligations under Regulation (EU) 2023/203 will apply from 22 February 2026. 

This regulatory milestone enables integration of large UAS into civil airspace 

but leaves open questions on organisational models and competencies. Two 

paradigms are emerging: 

• Closed systems – vertically integrated, manufacturer-led architectures 

in which design, production, maintenance, training, and operations are 

contained within a single organisational boundary. These systems 

emphasise regulatory clarity, procedural uniformity, and operational 

predictability. 

• Open systems – distributed, multi-platform architectures where 

multiple manufacturers, training providers, and maintenance 

organisations collaborate. These systems emphasise adaptability, 

innovation, and socio-technical resilience, but require more complex 

coordination and oversight. 

This study analyses the implications of Closed versus Open models through 

the lens of the Knowledge, Skills, and Attributes/Other (KSA) framework as 

defined in ICAO Doc 9868 and EASA’s Area 100 KSA provisions. The 

research combines three elements: 

1. Regulatory review – systematic analysis of the certified-UAS 

package, including AMC/GM material, to map organisational and 

competency requirements. 

2. Literature synthesis – drawing on research from manned aviation, air 

traffic control, remotely piloted aircraft systems, and socio-technical 

innovation theory (tight coupling, open innovation, resilience 

engineering, knowledge-creation models). 

3. Practitioner insight – lessons learned from planning an EASA-

certified Continuing Airworthiness Organisation (CAO.UAS), 



maintenance and MRO systems, and training capability for certified 

UAS. 

Findings. The analysis shows that Closed systems provide regulatory 

simplicity and reduce variability, aligning with tightly coupled environments 

where compliance demonstration is paramount. By contrast, Open systems 

broaden the competency profile of personnel, strengthen adaptability, and 

diffuse innovation across platforms, but at the cost of higher organisational 

complexity. The operational model choice cascades into CAO scope, 

maintenance arrangements, training curricula, operations-centre design, data 

governance, and ground-handling practices. Hybrid approaches appear 

promising, where a Closed “core” ensures compliance efficiency and 

oversight, while Open interfaces enable adaptability and innovation. 

Implications. The study highlights the strategic trade-offs inherent in model 

choice. Closed systems risk long-term rigidity and vendor dependency, 

whereas Open systems demand more from oversight and competence 

management but support resilience and technology uptake. Competency-

based training and assessment (CBTA/EBT), informed by both explicit 

knowledge (procedures, regulatory requirements, technical manuals) and tacit 

knowledge (experience, situational awareness, adaptability), emerges as a 

critical enabler in both models. Regulatory authorities, operators, and training 

organisations must therefore collaborate to ensure training infrastructures can 

accommodate diverse competence demands. 

Application relevance. For FinDrones 2025 domains—logistics, security, 

environmental monitoring, and infrastructure—operational model choice 

shapes readiness, safety, scalability, and cost. Logistics may prioritise Closed 

integration, while environmental monitoring may benefit from Open 

adaptability. 

Conclusion. The introduction of the EASA certified category marks the 

beginning of a new regulatory era for UAS operations. By framing operational 

design choices through the KSA lens, this study provides a structured way to 

align organisational models, competency frameworks, and regulatory 

compliance. The results support operators, regulators, and training providers 

in anticipating the cascading effects of model choice, and they encourage 

further exploration of hybrid solutions that combine regulatory assurance with 

adaptive capacity. 

Keywords: Certified UAS; Closed and Open models; KSA; CAO.UAS; MRO. 
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Abstract  

Biodiversity supports boreal forest stability, with European aspen (Populus tremula L.) 
enhancing it by providing crucial habitats and resources for dependent species. Despite 
existing aspen remote sensing methods, there is no efficient method for mapping it over 
large areas to support forest management and conservation. In this study, we developed a 
deep learning-based semantic segmentation model to detect aspen from openly available 
national aerial imagery, evaluated its accuracy using field data, and compared the detection 
performance between leaf-on and leaf-off conditions. The study was conducted in three 
areas in southern Finland: Helsinki, Lohja, and Evo. We employed a U-Net encoder-decoder 
architecture using four-band aerial imagery (RGB and NIR) with a spatial resolution of 0.5 
meters, captured during both seasonal conditions. Training data consisted of visually 
identified aspen locations from imagery between 2010 and 2023, covering 290 sites across 
Finland. We found notable differences in detection accuracy between leaf-on and leaf-off 
conditions and aspen size. The F1-score was higher in leaf-off (0.577) than leaf-on (0.463), 
with intersection over union (IoU) values of 0.280 and 0.256 for leaf-off and leaf-on, 
respectively. The diameter at breast height (DBH) of the detected aspens was similar for 
both conditions. Moreover, detection accuracy improved for larger aspens, with F1-scores 
reaching 0.663 (leaf-off) and 0.551 (leaf-on) for aspens >20 cm DBH, and 0.710 (leaf-off) 
and 0.594 (leaf-on) for those >30 cm. The developed model reasonably locates aspen 
distribution and abundance, assisting forest managers make informed management 
decisions. 

Keywords: Biodiversity, keystone species, deep learning, semantic segmentation, U-net 

 

 

 

 



Figure 1: Aspen cover estimation using the best model (leaf-off) for the study areas: a) 

Helsinki, b) Lohja, c) Evo (16×16 m², ETRS89-TM35FIN) 
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The European disaster recovery optimization with European DroneAI (DRONEAI) paper 
aims to revolutionize disaster recovery by developing cutting-edge drone and AI solutions 
produced in Europe, to enhance resilience in areas affected by natural disasters and human-
made disasters. 

The DRONEAI paper targets the development of an advanced drone system capable of 
optimizing recovery from both human and natural disasters. This includes scenarios such 
as the reconstruction of war-torn areas, as well as responses to storms, forest fires, pest 
infestation, soil desertification, floods, microplastic waste, and oil and fuel spills in the seas. 

The paper exposes state-of-the-art European drone component manufacturers, sensor 
technology developers, and artificial intelligence (AI) algorithm companies. The goal is to 
elucidate a comprehensive European drone solution that integrates cutting-edge 
microtechnology with sophisticated AI algorithms to optimize disaster recovery.  
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Agriculture is evolving through predictive modeling, data-based decision-making, and the 
creation of environments for experimentation, demonstration, and co-development. By 
combining drone imaging, sensor technologies, and digital tools, cultivation practices are 
being refined to support more informed and timely decisions in farming. 

Since 2021, an applied research team in smart agriculture has been operating at the 
Bioeconomy Institute of JAMK University of Applied Sciences, located on the Bioeconomy 
Campus in Saarijärvi. The team focuses on smart field cultivation and data utilization, 
automation, farmer data storage and data licensing, as well as the Digital Twin of the 
Farm. Collaboration with the POKE Vocational College enables a broad testing 
environment. Poke has 100 hectares of fields, 700 hectares of forest, and a robot dairy 
barn. Some of the field plots are equipped with soil sensors and weather stations, and 
continuous monitoring is conducted throughout the growing season using, for example, 
drone imaging. 

Research activities began on the Huipuri field plot, where drone imaging has been used to 
observe crop growth over four growing seasons. At Huipuri, drone imaging has supported 
selective harvesting planning, identification of problem areas, monitoring of crop 
development, and moisture assessment in combination with soil sensor data. Extensive 
data collection using various sensors combined with drone imaging enables a 
comprehensive examination of the field. For two growing seasons, drone imaging has also 
been applied to grass fields. During the past growing season, imaging of both cereals and 
grasses was expanded to farmers’ fields in the Saarijärvi and Jyväskylä areas to support 
cultivation decision-making. Imaging was conducted frequently throughout the season and 
targeted at specific decision-making phases, such as assessing the overwintering of winter 
cereals in the spring. 

Imaging has utilized both the fixed-wing EbeeX drone and the Phantom 4 quadcopter. 
Both drones support RGB and multispectral imaging. The EbeeX drone also features a 
Duet T combination camera, which enables the detection of temperature differences in 
vegetation. 

At the Bioeconomy Institute, drone imaging is part of a broader development in smart 
agriculture. In the Finnish Future Farm and the pioneers of Datapelto – the reform of grain 
trade with community data projects, drone imaging is integrated into a larger smart 
agriculture framework. This development strongly involves, for example, automation, IoT, 
artificial intelligence, and the digital twin of the farm. 

Through the Finnish Future Farm project, smart agriculture development has been further 
expanded to include modeling and data-driven decision-making. A key goal of the project 
is to create an environment for experimentation, demonstration, and co-development in 
smart agriculture. Drone imaging and other measurements conducted at Huipuri field plot 
play a central role, particularly in the digital twin environment. 



In the Optimizing the Harvest Time of Silage project, drone imaging and NIR analyzers are 
used to determine the optimal harvest time and assess the yield quantity and quality. The 
goal is to create a tool or model that improves the timing of grass silage harvesting. 

In the pioneers of Datapelto – the reform of grain trade with community data project, the 
aim is to collect data to support decision-making within the farming community and to base 
decisions on data in accordance with fair data economy principles. In this project, drone 
imaging has been used to investigate potential winter damage in winter rye. Based on the 
imaging results, a decision was made to renew the crop due to extensive winter damage. 

Frequent observations allow farmers and researchers to monitor crop development, detect 
stress and identify issues early. Multispectral imaging helps monitor plant health and 
nutrient deficiencies which are not visible to the naked eye. The goal of drone imaging at 
the Bioeconomy institute is to develop and enhance decision-making in cultivation 
practices. A bird’s-eye view provides a broader understanding of field conditions, and 
various sensors enable the detection of phenomena beyond human capabilities. 
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Abstract:  
Persistent monitoring is a continuous observation of a target area over time. Although 
applications such as wildfire detection and agricultural maintenance still depend on a single 
drone, its limited flight time and vulnerability to failure make a swarm-based approach 
preferable. Swarms provide greater efficiency, resilience, and uninterrupted coverage. As a 
result, drone swarms are increasingly being used for environmental monitoring and wildfire 
detection. 
We present a human–drone swarm interaction system for adaptive and prioritized persistent 
monitoring using an ergodic coverage control algorithm (Fig. 1). A human operator can 
flexibly designate or modify areas of interest in real time, with target points automatically 
clustered to enable simultaneous monitoring of multiple regions. An ergodic controller 
ensures proportional coverage of a user-defined probability density function. Unlike prior 
ergodic control work, our method integrates the controller into a quadratic programming (QP) 
framework with control barrier functions (CBFs) to guarantee inter-drone collision avoidance, 
enforce velocity limits, and confine drones within the designated monitoring area. 
To enhance robustness, a fault-tolerance mechanism detects and removes failed drones 
from the potential threat in the field and allows uninterrupted coverage. Real-time 
visualization via RViz enables operators to observe trajectories, assess coverage 
performance, and make informed adjustments during operation. 
The system is validated through real-world experiments using Crazyflie 2.1 nano-quadrotors 
from Bitcraze. Results demonstrate that the proposed approach optimizes the ergodic 
coverage metric while ensuring safety and maintaining operational integrity even under 
drone failures. These findings highlight the potential of combining human–swarm interaction, 
safety-critical control, and fault-tolerant coordination for real-world persistent monitoring 
missions. 

 
 
Figure 1. Our proposed framework for human-drone swarms persistent monitoring. The persistent monitoring scenario 
begins with human operators pinpointing the target location, which is then converted into a PDF. The PDF and the drone 
trajectories are visualized in Rviz. Video of the experiment can be viewed in https://youtu.be/iXuJmhCI0rQ 
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1. Introduction  

In recent years, deep learning has received significant attention in the field of remote sensing 
and has become increasingly integrated into precision agriculture research. While fully 
supervised and transfer learning are the predominant techniques for training deep learning 
models, recent progress in computer vision has led to development of numerous foundation 
models tailored to remote sensing applications. These models are typically trained in a self-
supervised manner on sensor-specific data. 

The contribution of this research lies in the self-supervised training of a MicaSense-based 
model, and thereby advancing self-supervised learning for UAV imagery, with a focus on 
precision agriculture. The pretrained weights will be made publicly available and 
furthermore, the trained model will be integrated into SpecDeepMap, an open-source 
application within the EnMAP-Box QGIS plugin (v.3.16 experimental release) that allows 
users to train or fine-tune models via a graphical user interface (Jakimow et al., 2023).  

3. Methodologies  

3.1 Data collection 

A custom-built hexacopter from the Agrotechnology research group of University of Helsinki 
equipped with a MicaSense Rededge 3 camera is used for the data collection. The images 
were captured during summer months over a five-year period from 2020 to 2024 on 
agricultural fields owned by the Research Farm of University in Helsinki, located in Helsinki. 
For the acquisition two different flight altitudes were used 50 meters and 10 meters. The 
crop types included in the data collection among others were barley, faba bean, oat, 
rapeseed, and couch grass.  

3.2 Data preprocessing  

3.2.1 Self-supervised training  

The data was calibrated and mosaiced and spectral indices were created using the PIX4D 
software. The data was split into 256x256 image chips for self-supervised training, with each 
chip containing 7 channels: Blue, Green, Red, Red Edge, NIR, Normalized difference 
vegetation index (NDVI), and NDVI_RedEdge. This process resulted in 22,383 image chips 
from the flight at 50 meters, and 4,883 image chips from the flight at 10 meters. All image 
chips were combined into a single dataset for use in the self-supervised training (Fig. 1). 



 

Figure 1. Image chips of Dataset visualized as RGB.  

3.3 Experimental set up  

3.3.1 Self-supervised Training  

For self-supervised learning, Momentum Contrast (MoCo-v3) is utilized. MoCo-v3 
incorporates extensive data augmentation techniques, such as color jittering and blurring, 
during the self-supervised learning process for the image reconstruction task (Chen et al., 
2021). For the trainable encoder, the Swin-Transformer architecture is selected (Liu et al., 
2021). The Swin-Transformer encoder was trained using MoCo-v3 with a batch size of 84, 
a learning rate of 0.0075, a learning rate scheduler, and 50 epochs of training. 

4. Preliminary Results  

 

Figure 2: Loss of MoCo-v3 during training of 50 epochs.  

As indicated by the loss graph (Fig. 2), the MoCo-v3 training of the Swin-Transformer 
performs well, and the loss is steadily decreasing with more training epochs indicating that 
the encoder continues to learn meaningful features. 

5. Discussion & Conclusion 

The self-supervised training has shown first promising results, but the trained encoder will 
be further evaluated on suitable downstream tasks using multiple MicaSense image 
datasets. However, the detailed comparison against the randomly initialized encoder has 
yet to be concluded. Furthermore, different pretraining settings of the MoCo-v3 training will 
be evaluated.   
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Drone-teknologiat ovat jatkaneet nopeaa kehitystään viime vuosina, ja niiden rajapinnat 
tarjoavat yhä monipuolisempia mahdollisuuksia kolmansien osapuolien sovelluksille. Yksi 
droneteknologioiden tulevaisuuden sovellutussuunta on niiden käyttäminen osana 
laajempaa heterogeenista robotiikka- tai automaatiojärjestelmää. Esimerkiksi 
maataloudessa kartoitusdrone voi tuottaa työtehtäviä reaaliajassa työkoneautomaatiolle, 
ruiskudrone voi jakaa työtehtäväänsä peltorobotin kanssa olosuhteiden mukaan, tai 
erillinen sensoriverkosto voi hälyttää valvontadronen tietylle peltolohkolle. Vastaava 
koordinointi ja yhteisvaikutus ovat keskeinen osa tulevaisuuden dronetoimintaa myös 
lukuisilla muilla sovellutusalueilla. Tällainen muuhun automaatiojärjestelmään liittäminen 
vaatii käyttökelpoista rajapintaa drone-järjetelmään, mikäli kyseistä järjestelmää ei haluta 
rakentaa ja kehittää alusta alkaen vaan halutaan käyttää olemassa olevaa drone-
kokonaisuutta. Tässä tutkimuksessa selvitimme eri dronevalmistajien mahdollistamia 
rajapintoja. 

Useiden valmistajien tarjoamat rajapinnat ja SDK:t (Software Development Kit) 
mahdollistavat laajan sovelluskehityksen drone-teknologian ympärille. 
Rajapintamahdollisuuksista DJI:n Cloud API on noussut keskeiseksi työkaluksi, joka 
mahdollistaa DJI:n uusimpien laitteiden integroinnin pilvipohjaisiin järjestelmiin. Cloud 
API:n avulla voidaan hallita droneja etänä, suunnitella reittejä, suorittaa tehtäviä ja siirtää 
dataa kuten kuvia ja telemetriatietoja reaaliaikaisesti pilvipalveluihin. Rajapinta perustuu 
MQTT-protokollaan (Message Queuing Telemetry Transport), joka tukee sekä manuaalista 
ohjausta (Pilot-to-Cloud) että automaattista operointia (Dock-to-Cloud) esimerkiksi DJI 
Dock -järjestelmien eli maa-asemien kautta. Skydio SDK Cloud tarjoaa Skydion 
dronejärjestelmille RESTful API:n muiden järjestelmien integrointiin mutta lähinnä 
analytiikkapuolelle, Remote Ops mahdollistaa Skydion etä-operoinnin jopa selaimella. 
Parrotin OpenFlight-rajapinta mahdollistaa yhteyden kolmannen osapuolen 
analytiikkatyökaluihin ja pilvipalveluihin. Näiden rajapintojen avulla voidaan rakentaa 
räätälöityjä sovelluksia, jotka yhdistävät dronejen keräämän datan muihin järjestelmiin, 
kuten paikkatieto-ohjelmistoihin tai tuotannonohjausjärjestelmiin. Parrot tarjoaa myös 
avoimen FreeFlight 7 core SDK:n, jonka avulla dronejärjestelmää voi ohjata esimerkiksi 
Githubista löytyvien esimerkkien avulla. Autel Robotics tarjoaa avoimia rajapintoja 
erityisesti EVO II -sarjan droneille. Autelin SDK tukee reitinsuunnittelua, sensorien 
hallintaa ja datan siirtoa pilvipalveluihin. Intel Aero SDK keskittyy datan prosessointiin ja 
analytiikkaan. Intelin rajapinnat tukevat myös monimutkaisia laskentatehtäviä, kuten 
reaaliaikaista kuvantunnistusta ja ympäristön mallinnusta. DroneKit on avoimen 
lähdekoodin SDK, joka tukee MAVLink-protokollaa ja toimii useilla alustoilla, kuten 
Android, Linux ja web. DroneKit mahdollistaa autonomisen lentämisen, reitinsuunnittelun 
ja telemetrian hallinnan. Se on erityisen suosittu tutkimusprojekteissa ja prototyyppien 
kehityksessä, koska se on ilmainen ja laajasti dokumentoitu. 
Nämä erilaiset SDK:t tarjoavat mahdollisuuden ohjelmoida dronen toimintaa reaaliajassa 
ulkopuolisella järjestelmällä. Maataloudessa on luotu CAN-väylään perustuva ISOBUS-
standardi työkoneen, traktorin ja ohjainlaitteiden väliselle kommunikoinnille, sekä EFDI 



(Extended Farm Management Information Systems Data Interface) ISOBUS-yhdistelmien 
sekä maatilan tiedonhallintajärjestelmän välille. VDA5050 (Verband der 
Automobilindustrie) on saksalaisen autoteollisuuden kehittämä standardi logistiikka- ja 
varastointipuolelle, joka mahdollistaa eri valmistajien autonomisten mobiilirobottien (AMR) 
yhteistoiminnan MQTT-pohjaisen ohjausjärjestelmän kautta REST-rajapinnalla. 
Droneteknologioiden ympärillä kehitystä tapahtuu jatkuvasti. Menetelmät, kuten MAVLink 
sekä ROS2 (Robot Operating System 2) käsittelevät dronejärjestelmän sisäistä toimintaa, 
mutta mahdollistavat myös kolmannen osapuolen integraation esimerkiksi MAVSDK API 
sekä RTPS (DDS) Real-Time Publish-Subscribe protokolla. Flexigrobots-hankkeessa 
testasimme dronejärjestelmiä yhdessä peltorobottien kanssa (kuva 1), hankkeessa 
rakennettiin erillinen Mission Control Centre (MCC), jonka käytössä olivat mm. MQTT, 
ROS, MAVLink.  

 

 

Kuva 1. Drone osana robotiikkaa pellon kunnostustyössä (Flexigrobots hankkeen pilotti). 

 
Mahdollisuuksia erilaisiin kolmannen osapuolen integraatioihin on siis runsaasti. 
Dronetoiminnassa erilaiset haavoittuvuudet ovat helposti kriittisiä, ja esimerkiksi DJI on 
lopettanut tuen Cloud Apin Github-esimerkeille juuri haavoittuvuuksien takia. 
Lähtökohtaisesti kolmannen osapuolen droneoperointi ja sen kehitys on haastavaa. 
Kehitystyötä ei voi tehdä yrityksen ja erehdyksen kautta. Tarvittaisiin selkeämpää 
määritystä siihen, mikä kuuluu dronevalmistajalle ja millä geneerisellä tasolla dronen 
toimintaan pystyisi reaaliajassa vaikuttamaan ilman, että ilmailutoiminta vaarantuu. 
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Increasing the use of nitrogen fixing species, such as red clover, in grassland leys is 
among the most effective ways to improve nitrogen self-sufficiency on cattle farms in 
Finland (Leino et al. 2023). However, limited seed production and lack of well adapted 
seed strains for northern conditions have partly hindered wider adoption. Our aim was to 
develop novel drone-based methods for red clover seed producers to assess factors 
influencing seed yield, including pollination and the relationship between flowering intensity 
and duration to seed yield.  
 
Data, including reference and drone data, was collected from five fields in North Savo 
region used for red clover seed production. Reference data used for drone data 
interpretation included pollinator counts (transect method), seed yields measured at 
transect endpoints and at the field level, and manual flower counts at transect endpoints. 
 
Drone data were collected for two primary purposes: 1) locating potential habitats in the 
surrounding environment that affect pollinator abundance near the fields, and 2) estimating 
flowering intensity and dynamics. Imaging for flowering intensity was conducted four times 
during the 2024 growing season on all fields, aiming to cover majority of the flowering 
period. Images for flowering intensity estimation were collected using DJI Matrice 350 RTK 
drone equipped with H20t camera collecting simultaneously accurate zoomed-in images 
for flower counting and images with wider lense for photogrammetric mapping of the field. 
Flights were carried out using a height of 60 meters. In addition, drone imaging was 
carried out on all fields to estimate spring density of swards on 23rd-24th May. 
 
Flowering intensity was estimated as the coverage of red clover flowers in the images. 
Images were segmented using RootPainter (Smith et al. 2022). Semantic segmentation 
models were trained using a subset of 100 images, achieving a Dice score over 0.98. 
 
Drone data were generally of sufficient quality for flower coverage estimation in the images 
(Figure 1). 
 
Drone and reference data collection will continue in 2025 and 2026. When these data 
become available, the flowering intensity estimation technique developed and evaluated 
here can be used to further examine factors influencing pollination success and the 
relationship between seed yield to flowering. 
 



a) 

 
b) 

 
Figure 1. Image segmentation was done using RootPainter where a) flowers were 
recognized from images (resolution 5184x3888 pixels) collected using DJI H20t camera’s 
zoom lense and flying height of 60 meters, and b) segmentation model was trained using 
100 annotated images, achieving a Dice score over 0.98. 
 
The developed method for assessing red clover flowering from drone images proved 
sufficiently accurate to facilitate further analysis of the data against factors influencing 
pollination. 
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